Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition
نویسندگان
چکیده
A central goal of cognitive neuroscience is to decode human brain activity-that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive-that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model-Generalized Correspondence Latent Dirichlet Allocation-that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to "seed" decoder priors with arbitrary images and text-enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity.
منابع مشابه
A probabilistic MR atlas of the human cerebellum
The functional organization of the cerebellum is reflected in large part by the unique afferent and efferent connectivity of the individual cerebellar lobules. This functional diversity on a relatively small spatial scale makes accurate localization methods for human functional imaging and anatomical patient-based research indispensable. Here we present a probabilistic atlas of the cerebellar l...
متن کاملProbabilistic functional tractography of the human cortex
Single-pulse direct electrical stimulation of cortical regions in patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes induces cortico-cortical potentials that can be used to infer functional and anatomical connectivity. Here, we describe a neuroimaging framework that allows development of a new probabilistic atlas of functional tractography of th...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملFunctional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally dis...
متن کاملALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas
With the ever-increasing number of studies in human functional brain mapping, an abundance of data has been generated that is ready to be synthesized and modeled on a large scale. The BrainMap database archives peak coordinates from published neuroimaging studies, along with the corresponding metadata that summarize the experimental design. BrainMap was designed to facilitate quantitative meta-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017